
Name:	Date:
Elementary Statistics	HW 7.4 part 1

- 1. Using a simple random sample of 40 LDL cholesterol levels of women (in mg/dL)², we get the following 95% confidence interval estimate of the population variance: $916.591 < \sigma^2 < 2252.119$
 - a. Identify the corresponding confidence interval estimate of the population standard deviation, σ . (round your final answers to the thousandths place).
 - b. State the confidence interval estimate for σ in context of the question.
- 2. The dotplot below depicts individual digits selected in the Pick 4 lottery from different states.

- a. Can the original list of individual sample digits be identified?
- b. Can the sample data be used to construct a 95% confidence interval estimate of the population standard deviation for all such digits? Why or why not?

- 3. A simple random sample of 20 dollar coins has a standard deviation of 0.04111g. Assume the data is from a population that is normally distributed and you want a 99% confidence interval estimate of the standard deviation for the weights of all dollar coins, σ .
 - a. Identify the following values:

b. Find the critical values, χ_L^2 and χ_R^2

$$\alpha =$$

$$\alpha/2$$

Area to the right of χ_L^2 =

$$\chi_L^2 =$$

Area to the right of χ_R^2 =

$$\chi_R^2$$
 =

c. Construct the 99% confidence interval estimate of the population standard deviation, σ . (Round your final answers to the thousandths place.)

$$\sqrt{\frac{(n-1)s^2}{\chi_R^2}} < \sigma < \sqrt{\frac{(n-1)s^2}{\chi_L^2}}$$

d. State the confidence interval estimate for σ in context of the question.

- 4. Based on a simple random sample of 40 Chips Ahoy cookies, the mean number of chocolate chips is 23.95 and the standard deviation is 2.55. Assume the data is from a population that is normally distributed and you want a 90% confidence interval estimate of the standard deviation for the number of chocolate chips in all Chips Ahoy cookies, σ .
 - a. Identify the following values:

b. Find the critical values, χ_L^2 and χ_R^2

$$\alpha =$$

$$\alpha/2$$

Area to the right of χ_L^2 =

$$\chi_L^2 =$$

Area to the right of χ_R^2 =

$$\chi_R^2 =$$

c. Construct the 99% confidence interval estimate of the population standard deviation, σ . (Round your final answers to the hundredths place.)

$$\sqrt{\frac{(n-1)s^2}{\chi_R^2}} < \sigma < \sqrt{\frac{(n-1)s^2}{\chi_L^2}}$$

d. State the confidence interval estimate for σ in context of the question.